Monitoring: 2010 Edition

- James Jarvis
- APRS World, LLC
- www.aprsworld.com

Site Assessment

Site Assessment (is not happening)

- Hardware available and more cost effective than ever
- Why not?
 - Still expensive
 - Delays sales process
 - Not required for incentives

Site Assessment (is happening)

Large wind

- Still seeing MET towers at wind farms under construction
- Educational
- New installers & new geography

Turbine Testing

(It is HORIZONTAL AXIS!)

Sales (are happening)

- (responsible) industry is pushing towards verified and performing turbines
 - Small Wind Certification Council (SWCC) requiring testing to AWEA standards

Excellent

Test with lab to IEC 61400-12 standards

INTERNATIONAL STANDARD

IEC 61400-12-1

> First edition 2005-12

Wind turbines -

Part 12-1: Power performance measurements of electricity producing wind turbines Very expensive for small wind

- Many \$\$\$ of labor and equipment
- Accredited laboratory required
- Hundreds of pages and thousands of dollars for the standards

National Renewable Energy Lab

 Has developed techniques for IEC testing, but does not want to provide it as a commercial service

Good

- Data and test driven design
- Extensive field testing with manufacturer or customer supplied monitoring

Bad, but better than nothing

- KWH meters on turbine output
- No wind data

Reading Mo-kwh	Jan1 1672	Jan 2860 1188	Feb 3788 928	Mar 4774 1040	Apr 6237 1463	May 7497 1260	June 8391 894	July 9053 662	
Reading Mo-kwh : 785kwh/month	12650	13873 1223	14998 1125	16195 1197	18186 1991	20011 1825	20456 445*	21042 586	1

UGLY

Ship it and let the customer see if it works

(end user spent thousands to monitor their turbines that have produced \$0)

Small Wind Certification Council

- Data driven testing process
- Designed and relatively affordable for small wind
- Testing of:
 - Power Performance
 - Acoustic
 - Duration
- Design Verification of:
 - Safety and function
 - Structure

AWEA / SWCC Testing (continued)

Power performance

Power, voltage, current versus standardized wind conditions

Acoustic

Rated sound level, changes in sound

Duration

 Vibration, hours of operation, hours of power production, turbulence, power degradation

Manufacturer Testing Requirements (for SWCC / AWEA)

- Characterized test site with full range of wind conditions
- Calibrated equipment
- Documented processes
- Accredited laboratory and/or review by SWCC for proper operation and correct data

Deployment

Remote Monitoring from the turbine manufacturers

Picking on our conference sponsors:

	Bergey	Xzeres	SW WP	Endurance	WTI	Fortis
Mentioned On MFG web:	No	No	Barely	Yes!	No (just announced)	Barely
Availability:	Partner	Inverter Supplier	No	Direct	Direct	Inverter Supplier
Price (MSRP):	\$650	\$600		\$0	?	\$600
Anemometer:	+ \$\$\$	+ \$\$\$	No	\$0	?	+ \$\$\$
Web Monitoring:	Yes Automatic	\$\$\$ + hardware + configuration	No	Yes	Yes Automatic	\$\$\$ + hardware + configuration

Manufacturer Examples

Xzeres and Fortis using SMA inverters using SUNNY WEBBOX:

System State Frequency

This table shows the percentages of time the inverter spend

N Occurances	State Code	State Description				
98,117 (96.8%)	9	RUNNING				
2,950 (2.9%)	5	WAITING FOR WIND				
152 (0.2%)	4	STOP				
58 (0.1%)	7	AC_RUNNING				
26 (0.0%)	6	AC_RUN_INIT				
8 (0.0%)	11	FAULT				
101,311 total		·				

010-06-07 20-08-43 800 AC UNDER FREQ: The frequency of the utility grid voltage went out of range. The upper range threshold was crossed Sur 2010-06-07 20:08:53 8000 AC UNDER FREQ: The frequency of the utility grid voltage went out of range. The upper range threshold was crossed Sun 2010-06-07 20:45:08 2280 AC UNDER VOLT: The AC line voltage has dropped below its minimum threshold ounding Data: (TXT) (CSV 2010-06-07 20:45:11 2280 AC UNDER VOLT: The AC line voltage has dropped below its minimum threshold 2010-06-08 03:55:22 8000 AC UNDER FREQ: The frequency of the utility grid voltage went out of range. The upper range the nding Data: (TXT) (CSV 2010-06-08 03:55:32 8000 AC UNDER FREQ: The frequency of the utility grid voltage went out of range. The upper range threshold was crossed Surrounding Data: (TXT) (CSV) 2010-06-08 04:20:17 8000 AC UNDER FREO. The frequency of the utility grid voltage went out of range. The upper range threshold was crossed Surrounding Data: (TXT) (CSV 2010-06-08 04:20:27 8000 AC UNDER FREQ: The frequency of the utility grid voltage went out of range. The upper range threshold was crossed Surrounding Data: (TXT) (CSV)

WTI and Endurance:

???

(Now) (Diagnostics) (Fault Log)

564 KWH since monitoring started (2010-06-04)

2010-06-16 10:06:25 (CDT)

35 KWH over last 24 hours

2,499 KWH on inverter

244 VAC @ 60 Hz

100 VDC @ 20 amps

RUNNING

2.107 watts

<u>վիսինան, սուստին են կեստու</u>

Report received 2 seconds ago. PowerSyncII Inverter

Bergey:

Data Date:

Status:

Power:

Energy:

AC:

DC:

Remote Monitoring from third parties

Pros

- Available for anything
- Accurate (for \$\$\$)
- Flexible
- May be customizable

Cons

- Expensive
- Time consuming to install
- Complex
- May not be reliable
- Often custom
- Lead time

Incentives

State Incentives

Financial Incentives for Renewable Energy

From DSIRE	E (June 20	I 0): _{Feder}	al = 🗌 🥴	State =	Utility =	Local =	Non-Profit	=		
State	Personal Tax	Corporate Tax	Sales Tax	Property Tax	Rebates	Grants	Loans	Industry Support	Bonds	Production Incentives
Totals	42	42	39	64	339	68	165	37	3	0

- Site assessment monitoring typically not required
- Some incentives require performance monitoring
- Little or no production incentives

Incentive Performance Monitoring

- Many states with small wind incentives require wind speed and production data hardware to be installed
 - Collection of data is often sporadic and not well defined
- Massachusetts Clean Energy Center incentives require:
 - Two anemometers and a wind vane
 - Temperature
 - Power measurement
 - And prefer automatic reporting of 1 minute or faster data

Production Incentives

Question: Why no production incentives?

My Thoughts

- Industry is maturing and is certifying turbines
- Let's make sure they stay working in the field
- Let's incentivize those that do work